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PROPERTIES OF SPACE-TIME DISCONTINUOUS GALERKIN

ROBERT B. LOWRIE∗, PHILIP L. ROE† , AND BRAM VAN LEER†

Abstract.

A method is developed for the simulation of nonlinear wave propagation where high accuracy is required. The approach is

based on the space-time Discontinuous Galerkin (DG) finite-element method. In deriving the method, the idea of compactness

is strictly followed. That is, that the discrete domain of dependence should contain a minimum amount of data outside the

physical domain of dependence. Compactness is attained by carrying higher-order solution moments in each spatial-mesh cell

and through the definition of a family of space-time meshes. For any order-of-accuracy, we prove the method is L2-stable for

Courant numbers less than 1 and satisfies an entropy condition.

A Fourier analysis of the DG(k) method is discussed, where k is the order of the polynomial used in each element. The

method has a ‘superconvergence’ property, in that a component of the error converges as O(h2k+1), and this component

dominates the error for long-time calculations. Numerical experiments indicate that the superconvergence property extends to

some nonlinear cases.

The consequences of mesh staggering in time, in an effort to eliminate the need for the solution of the Riemann problem,

are also investigated.

Numerical results are shown that verify the error convergence rate for scalar advection and the Euler equations. A companion

paper will show more extensive numerical results.

1. Introduction. Two major challenges for computational fluid dynamics are problems that involve

wave propagation over long times and problems with a wide range of amplitude scales. An example with

both of these characteristics is the propagation and generation of acoustic waves, where the mean-flow

amplitude scales are typically orders-of-magnitude larger than those of the generated acoustics. Other

examples include vortex evolution and the direct simulation of turbulence. All of these problems require

greater than second-order accuracy, whereas for nonlinear equations, most current methods are at best

second-order accurate. Of the higher-order (greater than second-order) methods that do exist, most are
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tailored to high-spatial resolution, coupled with time integrators that are only second or third-order accurate.

But for wave phenomena, time accuracy is as important as spatial accuracy.

One property of many successful second-order methods is that they attempt to follow the physics of

hyperbolic problems. To develop higher-order methods, particularly for unsteady problems, it is tempting

to violate this philosophy. Typically, higher accuracy is obtained by increasing the size of the update stencil.

The consequence is that the stencil must stretch far outside of the physical domain of dependence. Instead,

our aim is to develop time-accurate methods that minimize the size of the update stencil.

For these reasons, we have chosen to study the Discontinuous Galerkin (DG) method. The DG method

was first proposed for solving the linear neutron transport problem [24, 33]. Thorough global error estimates

are derived by Johnson and Pitkaranta [21]. For hyperbolic conservation laws, a semi-discrete form of DG

has been developed by Cockburn et al. [10, 11, 12, 14]. Refinement and parallel implementation strategies

have been studied by Bey et al. [7, 8], Biswas, Devine, and Flaherty [9], and Devine [15]. Some interesting

issues regarding curved-wall boundaries have recently been studied by Bassi and Rebay [5]. Finally, the

method has been extended to include diffusion terms in [4, 6, 13, 30].

The DG method in this study follows the ‘space-time’ approach. Control volumes (elements) are defined

in space and time, and then a polynomial representation (which includes the time variable) of the solution

is found in each element. In this way, the temporal error can be kept on the same order as the spatial error,

which is critical for wave phenomena. The elements are arranged so that when solving a linear equation, each

element can be solved for explicitly in a marching procedure. This study proposes two space-time meshes

for solving 1-D nonlinear problems using the DG method. These meshes result in a point-implicit method,

in that the solution in each element requires the solution of a small system of equations and only a small

number of elements may be coupled. Moreover, the implicitness is weak, arising solely from the nonlinearity,

so that rapid iteration is possible. To avoid non-physical oscillations, a limiter has also been developed. The

method is then extended to 2-D problems using a novel space-time mesh.

The concept of a space-time approach has been used in finite-element methods for quite some time [29].
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More recently, the space-time approach of the related SUPG method is given by Shakib and Hughes [37, 38],

Jaffre, Johnson, and Szepessy [18], and Perrochet [32]. Note that Reference [18] also refers to their approach

as “Discontinuous Galerkin,” presumably because space-time SUPG uses the DG methodology in the time-

variable and possibly at a few select spatial locations (such as to track discontinuities; see also [20]).

In this study, one of the space-time meshes considered uses mesh staggering, in time, to eliminate the

need for the Riemann solver necessary in most upwind methods. The first-order accurate Lax-Friedrichs

scheme [22] effectively uses the same idea. A higher-order extension has been developed by Nessyahu and

Tadmor [28]. Others that use staggering include Sanders and Weiser [36] and Arminjon, Viallon, and

Madrane [1]. Although staggering is attractive from a cost perspective, the resultant schemes are diffusive

at low Courant numbers. A discussion of the advantages and disadvantages of staggering, and in particular

the issues for multi-dimensional problems, will be given in this paper.

The remainder of this paper is organized as follows: §2 will state the moment equations that DG

numerically solves. Also, this section covers the element-face definitions, which are an integral part of the

method. An overview of the numerical implementation is given in §3. The properties of the DG method, such

as accuracy and stability, are discussed in §4 with special reference to the phenomenon of superconvergence

in the error norm. Some numerical results are presented in §5, which at this point are used to confirm the

theoretical properties. Further numerical results will be presented in a companion paper [26] and can also

be found in [25, 27].

2. Discontinuous Galerkin Method.

2.1. Formulation. Consider a conservation law of Neqn-equations in d-space dimensions:

∂tu + ∇·f(u) = 0, (2.1)
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where u is the vector of conserved quantities, and

∇ = (∂x1 , . . ., ∂xd
), f = (f1, . . ., fd).

A more compact form used in this study is

�∇·�f = 0, (2.2)

where

�∇ = (∂x1 , . . ., ∂xd
, ∂t), �f = (f1, . . ., fd,u).

The notation here is v is a vector in space, while �v is a space-time vector, so that

�v = (vx1 , . . ., vxd
, vt) = (v, vt).

Assume that each component of f(u) is smooth enough that (2.1) may be written as

∂tu + A·∇u = 0, (2.3)

where each component of A is a Neqn × Neqn Jacobian matrix. Define the matrix

A� = �·A, (2.4)

with � a unit vector. This study assumes that (2.1) is hyperbolic; that is, for every �, A� has real eigenvalues,

λ�,m, m = 1, 2, . . ., Neqn, and distinct eigenvectors.

Divide the solution domain Ω into a set of Ne non-overlapping control volumes (elements), {Ωe}. Each
4



Ωe is allowed to be any type of polyhedron, with boundary ∂Ωe. A sample space-time mesh for d = 1,

between two time levels, is shown in Figure 2.1. On each element the DG method integrates the weak form

of eq. (2.2):

∮
∂Ωe

Φ�fb ·�ne dS −
∫

Ωe

�fe ·�∇Φ dV = 0, (2.5)

where �ne ≡ (ne,x1 , . . ., ne,xd
, ne,t) is the outward boundary unit normal, and the differentials dV and dS are

defined in Ωe and ∂Ωe, respectively.

Within each element the solution is approximated as

we(�x) =
N∑

i=1

φe,i(�x)ce,i, ∀�x ∈ Ωe, (2.6)

where {φe,i(�x)} are basis functions defined on Ωe and {ce,i} the expansion coefficient vectors. We stress

that �x includes the time variable. Also, w is the parameter vector [35]. For many conservation laws, the

components of u and �f can be written as quadratic functions of the components of w. This property is

exploited to evaluate the integrals exactly in eq. (2.5) [25].

DG(k) will refer to the DG method with each φe,i ∈ Pk(Ωe), where Pk(Ωe) is the space of polynomials of

maximum order k defined on Ωe. There are N -unknown Neqn-vectors in each element, namely the expansion

coefficient vectors, ce,i. The Galerkin approach generates N -vector equations from (2.5) by selecting the test

function Φ(�x) to span the set {φe,i(�x)}.

The value �fb denotes the flux on the element boundary, which may be equal to one of the two neighboring

element values, or some combination thereof. Note that the numerical solution is continuous within each

element, but possibly discontinuous across element boundaries. That is, there are no constraints on the

coefficients ce,i in (2.6) to maintain continuity with neighboring elements. The precise definition of the

boundary value is given in the next section.
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Fig. 2.1. Sample Space-Time Mesh and Element Definition.

2.2. Face Definitions. In this section, the element-boundary values, (·)b, will be defined. Each element

is a polyhedron with boundary ∂Ωe, which is subdivided into faces, with ∂ωe a specific face that separates

two elements Ωe and Ωe∗ . Define the interface value as a function of the values in the adjacent elements:

wb(�x) = F(we(�x),we∗(�x)), ∀�x ∈ ∂ωe.

The function F is evaluated using an upwind approach. Following upwind finite-volume methods, on a face

that is aligned with the t-axis (ne,t = 0) a (approximate) Riemann solver is used. Such a face is referred to

as a Riemann Face.

For faces where ne,t �= 0, our present implementation requires that all characteristic paths cross the face

in the same direction. Such a face is referred to as an Explicit Face. Specifically, on an Explicit Face the

quantity

µ = (�, λ�,m) · �ne
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is either strictly positive (also referred to as an “Outflow Face” with respect to element-e), or strictly negative

(“Inflow Face”), for all m and �, and all �x ∈ ∂ωe. The vector (�, λ�,m) is defined via (2.4). The boundary

value is set as

wb(�x) =




we∗(�x) if µ < 0 : “Inflow”

we(�x) if µ > 0 : “Outflow”
(2.7)

for all �x ∈ ∂ωe. In practice, the calculation of λ�,m for all � and �x ∈ ∂ωe is not needed, as long as a reasonable

local value is used, along with a safety factor. So that the elements can be solved for in a time-marching

procedure, on Explicit Faces we require that

sgn(µ) = sgn(ne,t), (2.8)

where again, ne,t is the time component of the normal vector �ne. This requirement translates into a Courant

condition. In fact, for scalar conservation laws and a reasonable estimate for the eigenvalues, in §4.1 we show

that (2.8) is sufficient for L2-stability.

Figure 2.2 shows an example of both a Riemann and Explicit Face for a 1-D space-time mesh. Note that

the same face definitions extend to multiple-space dimensions.

3. Implementation.

3.1. Space-Time Meshes. This section defines the space-time meshes on which the discrete form of

the conservation law is solved. How the mesh is defined will greatly influence the cost of the DG method.

There are roughly three criteria we follow when designing a space-time mesh:

1. Use only Riemann and Explicit Faces.

2. The method should be at worst point implicit.

3. The method should be compact.
7
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Fig. 2.2. Example Faces on Two Triangular Elements. Face A-B is a Riemann Face. The other four faces are Explicit
Faces. The paths labeled λmin and λmax correspond to the local minimum and maximum eigenvalues, respectively. The Explicit
Face A-C may also be referred to as an Inflow Face with respect to element-e or an Outflow Face with respect to element-e∗,
with the solution on the face taken as we∗ (�x).

By point implicit we mean that the solution in each element requires the solution of a small system

of equations and only a small number of elements may be coupled. In other words, the update cost per

time-step scales linearly with the total number of elements. By compact, we mean that the solution of an

element should use a minimum of information outside of its physical domain of dependence.

3.1.1. 1-D Meshes. First consider space-time meshes in one-space dimension (d = 1). Let the interval

0 ≤ x ≤ 1 be discretized into Nx cells of size hj , j = 1, 2, . . ., Nx. Let the solution be given at some time tn,

and the solution is to be advanced to tn+1 = tn +∆t. The most straightforward space-time mesh is shown in

Figure 3.1a. Bar-Yoseph and Elata [3] have applied DG using such a mesh with promising results. However,

at each time level the Rectangular Mesh couples the entire spatial domain through the Riemann Faces; eq.

(2.5) becomes an Nx × Nx block tri-diagonal matrix. In other words, the DG method is fully implicit on

the Rectangular Mesh. One advantage of such an approach is that there is no time-step restriction, which

for problems with a large range in eigenvalues can offset the additional cost of a fully-implicit method. For

problems without such disparate time scales, or for which the fastest waves must be resolved, an explicit or

point-implicit method is more natural and cost effective.
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(a) Rectangular.

tn+1

tn

1
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2 2

(b) Riemann.

tn+1

tn

4

12

3

(c) Staggered.

Fig. 3.1. Various Space-Time Mesh Segments. Solid lines denote Explicit Faces, with arrows indicating the flow of
information. Dashed lines are Riemann Faces. The element types are numbered according to the order in which they are solved
(Rectangular mesh solves for all elements simultaneously).

In 1-D, there are two canonical space-time meshes that satisfy our criteria above. The Riemann Mesh,

shown in Figure 3.1b, divides each cell of the Rectangular Mesh into four triangular elements. In general,

when the system has eigenvalues of both sign, each Riemann Face couples two elements implicitly. That is

to say, there is a system of equations that couples each type- 2 element and its neighbor, and this system is

twice as large as that for type- 1 or type- 3 elements. To avoid Riemann Faces altogether (except possibly

at boundaries), the Staggered Mesh in Figure 3.1c will also be used.

For linear systems and both the Riemann and Staggered Meshes, the diagonal Explicit Faces satisfy the

Courant condition (2.8) as long as the time-step is restricted as

ν ≡ |λ|max∆t

hj
< 1, ∀j,

where |λ|max is the maximum-absolute eigenvalue of the linear system. For nonlinear systems, a local estimate

of |λ|max is computed at the beginning of the time-step, along with a safety factor.
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Figure 3.1 also indicates the order in which the elements are solved. Referring to Figure 3.1b, the solution

procedure for the Riemann Mesh is as follows:

1. Solve in each of the elements of family 1 . The flux on the bottom face is either from the initial

condition, or the solution in element 3 from the previous time level.

2. Solve in the elements of family 2 . In general, these elements are coupled in pairs by the Riemann

Faces. The two elements are not coupled implicitly if all of the eigenvalues are of the same sign.

3. Solve in each of the elements of family 3 .

4. Proceed to the next time level.

The Staggered Mesh is solved in a similar fashion, the only difference being that no elements are coupled

implicitly. Consequently, the computational cost per time-step of the Staggered Mesh is cheaper than the

Riemann Mesh.

A mesh can also be defined that is made up of segments of the Riemann and Staggered Meshes. In

particular, to enforce boundary conditions (aside from periodic) the Staggered Mesh uses a Riemann Mesh

segment at the boundary [25].

3.1.2. 2-D Meshes. The 2-D space-time mesh is an extension of the 1-D Staggered Mesh of Figure

3.1c. The underlying 2-D spatial mesh is a quadrilateral mesh. To visualize the space-time mesh, Figure 3.2

shows the order in which elements are solved, over 1
2∆t. In the next half time-step, the mesh is staggered;

the Step (1) pyramid base, in the 1
2∆t < t ≤ ∆t interval, is coincident with the Step (3) pyramid base of

the 0 < t ≤ 1
2∆t interval. Note that at each step, none of the element solutions are coupled, just as in 1-D

Staggered Mesh. In particular, for Step (2), the same final solution results if the y-axis “valley” elements are

solved before the x-axis “valley” elements. The method does not use “operator splitting.” As a consequence,

the results will show that this mesh does not exhibit a loss of accuracy when the advection direction is

skewed with respect to the spatial mesh.

Reference [25] gives a 2-D analogy to the 1-D Riemann Mesh, meshes based on a 2-D triangular spatial

mesh, and a 3-D hexahedral mesh. Only the Staggered Mesh has been used for 2-D problems, with Riemann
10



x

y
t

Step (1): Solve in the pyramid elements
covering each x, y mesh cell.

Step (2): Solve in the tetrahedral
elements that fill the x-axis valleys of the

pyramid elements in Step [1].

Step (2)-continued: Solve in the
tetrahedral elements that fill the y-axis
valleys of the pyramid elements in Step

[1].

Step (3): Solve in the inverted-pyramid
elements.

Fig. 3.2. Element Solution Order for the 2-D Staggered Mesh. Only 1
2
∆t of mesh is shown.

Faces used on the domain boundaries to enforce boundary conditions.

3.2. Algebraic System. For a nonlinear conservation law, eq. (2.5) results in a nonlinear system of

equations for the coefficients, ce,i. This system is solved using Newton’s method. Consider the general case

where the solution of Nc elements are coupled. The linearized system of equations is of the form

M(δc) = −r, (3.1)
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where δc is the update to the expansion coefficients, and if r = 0, the discrete form of eq. (2.5) is satisfied

for each of the coupled elements. The matrix M is a Nc × Nc block matrix; the structure of eq. (3.1) is

given by




. . .
Me · · · Me,e∗

...
. . .

...
Me∗,e · · · Me∗

. . .







...
δce

...
δce∗

...




= −




...
re

...
re∗

...




.

Each submatrix M(·) is an (NeqnN) × (NeqnN) matrix, and

δce = (δce,1, . . ., δce,N ) .

From the boundary definitions, the coupling of elements can only occur across Riemann Faces. That is, the

coupling matrices Me,e∗ and Me∗,e are zero if no Riemann Faces separate elements e and e∗. For elements

without Riemann Faces, eq. (3.1) reduces for a single element e to

Me(δce) = −re. (3.2)

The formula for the residual vector r follows directly from eq. (2.5). The submatrices M(·) are derived

by linearizing the fluxes. To compute the integrals in eq. (2.5), quadrature is used. A sufficient number of

quadrature points is used so that the integrals are computed exactly ; this is possible because the solution is

expanded in terms of the parameter vector (eq. (2.6)). See [25] for the details.

4. Properties of the DG Method. The DG(k) method described in this study has the following

properties:

1. Local conservation. See [25] for the details.

2. Under certain restrictions, both stability and an entropy condition are satisfied for any order-of-
12



accuracy. At this time, the proof has been carried out for any scalar conservation law that has a

convex flux function, in any number of space dimensions.

3. High accuracy. Specifically, the method has a superconvergence property, in that under certain

circumstances the error converges as O(h2k+1).

An overview of items 2 and 3 will be given in this section.

4.1. Entropy Condition and Stability. This section will show that the space-time DG(k) method,

with certain constraints, satisfies an entropy condition for scalar conservation laws. The particular choice

of entropy function will also imply L2-stability. Jiang and Shu have already showed the semi-discrete DG

method satisfies an entropy condition [19]. Summarizing their results:

• For the entropy function η(u) = 1
2u2, the entropy condition is satisfied without limiting, for any

order of accuracy.

• To satisfy the entropy condition for all convex entropy functions, some sort of modification to the

scheme is required.

• Several time discretizations also satisfy the entropy condition, including implicitness factors ranging

from Crank-Nicholson to fully-implicit, and leapfrog.

It should then be no surprise that the space-time DG(k) also satisfies an entropy condition. However, the

proof is illuminating, in that a Courant condition will fall out of the analysis. Our proof is valid for any

number of space dimensions.

Consider the scalar conservation law

∂tu + ∇·f(u) = 0. (4.1)

The corresponding entropy condition is written as

∂tη(u) + ∇·q(u) ≤ 0. (4.2)
13



In the construction of eq. (4.2), η(u) is a strictly convex function, and

q(u) =
∫ u

η′(ξ)f ′(ξ) dξ.

Note that both (4.1) and (4.2) are in the weak sense; for smooth u, (4.2) is an equality.

The analysis in this section will only be for the entropy function η(u) = 1
2u2. When each component of

f(u) is convex, convergence is assured if the entropy condition is satisfied for a single entropy function [16, 23].

For non-convex f(u), all possible convex η(u) must satisfy the entropy condition. For this study, only convex

flux functions will be considered.

For η(u) = 1
2u2, the entropy flux is given by

q(u) = uf(u) − g(u), (4.3)

where

g(u) =
∫ u

f(ξ) dξ.

With Φ = ue, eq. (2.5) in this case can be written as

∮
∂Ωe

ue (f, u)b ·�ne dS +
∫

Ωe

�∇·(g, η)e dV = 0,

which by the Divergence Theorem reduces to

∮
∂Ωe

(uef b
− g

e
, ueub − ηe)·�ne dS = 0. (4.4)

14



First, consider elements that have no Riemann Faces. The boundary values on each face are then given

by eq. (2.8), so that

(f, u)b =




(f, u)e∗ if µ < 0,

(f, u)e if µ > 0,

(4.5)

with µ = (â, 1) ·�ne, and where â corresponds to an average wave velocity that will be defined as part of

satisfying the entropy condition. The boundary-entropy fluxes are defined by simply replacing (f, u) by

(q, η) in the expression above. Equation (4.4) becomes

∫
µ>0

(uefe
− g

e
, u2

e − ηe)·�ne dS +
∫

µ<0

(uefe∗ − g
e
, ueue∗ − ηe)·�ne dS = 0.

Re-arranging this expression, and using eq. (4.3) gives

∫
µ>0

(q, η)e ·�ne dS +
∫

µ<0

(q, η)e∗ ·�ne dS = E, (4.6)

where

E =
∫

µ<0

(
f

e∗∆u − ∆g,
1
2
(∆u)2

)
·�ne dS. (4.7)

and ∆(·) ≡ (·)e∗ − (·)e. But, using the boundary-value definitions of eq. (4.5), the left-hand side of eq. (4.6)

is in the form of the left side of the following:

∮
∂Ωe

(q, η)b ·�ne dS ≤ 0, (4.8)

15



which is a weak form of the entropy condition, (4.2). Therefore, the entropy condition is satisfied if

E ≤ 0. (4.9)

An easy case to analyze is when f(u) = (1
2u2, c), where c is a constant. Equation (4.7) then reduces to

E =
∮

µ<0

1
2
(∆u)2(â, 1)·�ne dS, (4.10)

where â = ((2ue∗ + ue)/3, c). The condition (4.9) is then satisfied if

(â, 1)·�ne ≤ 0. (4.11)

But this constraint is simply a variant of the Courant condition, eq. (2.8), and is the loosest possible

constraint consistent with causality.

For a more general f(u), the trapezoidal rule can be used to estimate ∆g. Then E takes the form of eq.

(4.10) with an average wave velocity given by

â =
∆f

∆u
+

1
6
f ′′|ξ∆u, (4.12)

where f ′′|ξ = (f ′′
1 (ξ1), . . ., f ′′

d (ξd)) and each ξi is between ue and ue∗ . At least for small ∆u, it easy to show

that each component of â is bounded between its respective component in f ′(ue) and f ′(ue∗). In theory,

the time-step could be determined by maximizing (â, 1)·�ne over ξ and ensuring that (4.11) is satisfied. In

practice some average wave velocity over the element is used, along with a safety factor. Regardless, with

the Courant condition (4.11), the entropy condition is satisfied.
16



The contribution of any Riemann Faces can now be included. A single Riemann Face contributes

ne ·
∫ ∆t

0

(uef
R − g

e
) dt (4.13)

to the left-hand side of (4.4). Therefore, the contribution to eq. (4.6) will be of the form

ne ·
∫ ∆t

0

qR dt − ER, (4.14)

where ER is the contribution to E. It remains to show that ER ≤ 0, and therefore that the contribution

from Riemann Faces only helps in satisfying the entropy condition.

Just as in [19], require that the Riemann flux fR be an E-flux [31]:

(
fR(u−, u+) − f(u)

)
(u+ − u−) ≤ 0

for all u between u− and u+. Define an entropy flux, consistent with (4.3), as

qR =




uef
R − g

e
if σ > 0,

ue∗fR − g
e∗ if σ < 0,

with

σ ≡ ne ·(x+ − x−),

where (x+−x−) denotes a direction pointing from u− to u+. Note that since ne = −ne∗ , the above definition

is conservative. With this definition, for σ > 0, by comparing eqs. (4.13) and (4.14) obviously ER = 0. For
17



σ < 0,

ER = −
∫ ∆t

0

(fR∆u − ∆g) dt.

By the Mean Value Theorem, ∆g = f(u1)∆u for some u1 between ue and ue∗ . So,

ER =
∫ ∆t

0

(ue − ue∗)
(
fR − f(u1)

)
dt.

From the definition of σ, it follows that u+ ≡ ue and u− ≡ ue∗ , and so ER ≤ 0.

This completes the proof that DG(k) satisfies an entropy condition for all convex flux functions. The

important constraint is the Courant condition, eq. (4.11). If Riemann Faces are used, the Riemann solver

must also be an E-flux.

Note that satisfying eq. (4.8) also implies stability in L2 [19]; if u(x, ·) has compact support, for every

t2 > t1,

∫ ∞

−∞
η(u(x, t2)) dx ≤

∫ ∞

−∞
η(u(x, t1)) dx.

We stress that this stability property is independent of the order k.

4.2. Accuracy. For a method using an order-k interpolant, the expectation is that at best the error

will converge as O(hk+1), where h is some measure of the mesh size. A norm typically used to measure the

solution accuracy at a given time-level is

Lp(v) =
{

1
|Ωd|

∫
Ωd

|vexact(x) − v(x)|p dx

}1/p

, (4.15)

where Ωd is the spatial domain, p is an integer with p ≥ 1, and v, vexact are the numerical and exact solutions

of a representative variable of the conservation law. A finite-element analysis shows that DG(k) converges
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in L2 as O(hk+1/2) [18]. However, for many smooth solutions on ‘regular’ meshes, practitioners often realize

O(hk+1) accuracy [18, 34].

As alluded to earlier, for a fixed Courant number, for some calculations we realize a convergence rate

of O(h2k+1). This superconvergence most often occurs with long-time calculations. In this section, an

argument is given as to why superconvergence can occur. We do this simply through a Fourier analysis.

Although a Fourier analysis is much more restrictive than the finite-element analysis of Reference [18], in

terms of assumptions on the regularity of the solution and mesh, a Fourier analysis will distinguish various

components of the error. Most importantly in the present context, the analysis will show the dominating

error component for long-time calculations. Although the Fourier analysis here will be for a linear scalar

equation, the analysis will also help explain some of the results in §5.2 for a nonlinear system. We stress

that our objective here is simply to give a rough explanation as to why superconvergence can occur, not to

develop specific conditions for its existence, nor to develop rigorous error estimates for the most general case.

Consider numerically solving linear advection,

∂tu + a∂xu = 0, (4.16)

on an equally-spaced mesh with a > 0. Let the x-coordinate in cell-j be written as

x = xj + hξ,

where h is the mesh spacing, xj the cell centroid, and ξ ∈ [− 1
2 , 1

2

]
. The DG(k) numerical solution at

time-level n in cell-j can be written as

Un
j (ξ) =

k+1∑
m=1

c̄n
j,mφ̄m(ξ). (4.17)

The basis functions {φ̄m(ξ)} are Legendre polynomials mapped onto the domain of ξ. The use of Legendre
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polynomials is not necessary to realize the accuracy claims in this section, but simplifies the discussion.

Referring to Figure 3.1, the above expansion corresponds to the space-time expansion (2.6) evaluated at the

previous time level, on the upper face of triangle 3 for the Riemann Mesh and triangle 4 for the Staggered

Mesh.

A property of the Legendre basis is that it is orthogonal. Therefore, the expansion coefficients can be

initialized as

c̄0
j,m =

∫ 1
2

− 1
2

φ̄m(ξ)u0
j (ξ) dξ

/∫ 1
2

− 1
2

φ̄2
m(ξ) dξ , (4.18)

where u0
j (ξ) is the initial condition in cell-j. It is easy to show that these coefficients minimize the difference

between U0
j (ξ) and u0

j (ξ) in a least-squares sense.

A compact notation for (4.17) is

Un
j (ξ) =

(
c̄n

j

)
B(ξ), (4.19)

where c̄j ≡ (c̄j,1, c̄j,2, . . ., c̄j,k+1) , and B(ξ) ≡ (φ̄1(ξ), φ̄1(ξ), . . ., φ̄k+1(ξ)) . In general, the update to the

expansion coefficients can be written as

c̄n+1
j = Gc̄n

j , (4.20)

where G is a (k + 1) × (k + 1) matrix. A Fourier analysis studies the influence of the update-matrix G on a

wave of specified amplitude and frequency. The initial condition in the j’th cell is taken to be

u0
j (ξ) = eiθ(j+ξ),
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where i =
√−1 and θ is the phase-change per mesh interval. The exact solution to (4.16) is

un
j (ξ) = gn

exactu
0
j (ξ), (4.21)

where

gexact = e−iνθ,

and ν = a∆t/h. The projection of the exact solution onto the expansion (4.19) is then

[
Un

j (ξ)
]
exact

= gn
exacte

ijθeexactB(ξ),

where

eexact,m =
∫ 1

2

− 1
2

φ̄m(ξ)eiξθ dξ

/∫ 1
2

− 1
2

φ̄2
m(ξ) dξ . (4.22)

The notation eexact,m means the m’th component of the vector eexact. Also, from eq. (4.18),

c̄0
j = eijθeexact.

For n > 0, the coefficient vector is assumed to take the form

c̄n
j = gneijθe,

where e is a constant vector and g the complex amplification. By substituting the above relation into (4.20),

it is apparent that g is an eigenvalue of G with corresponding eigenvector e. The (k + 1)-eigenvalues are
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numbered so that

|g1| ≥ |g2| ≥ |g3| . . . ≥ |gk+1|. (4.23)

In other words, the g1-eigenvalue represents the least-damped or accurate mode; the other modes are spurious.

A rough measure of the accuracy of DG(k) is the ‘closeness’ of g1 and e1 to gexact and eexact.

The numerical solution can now be written as

Un
j (ξ) = eijθ

k+1∑
�=1

gn
� e� B(ξ). (4.24)

Here the eigenvectors are scaled so that

k+1∑
�=1

e� = eexact. (4.25)

This unique scaling ensures that the projection of the initial condition is satisfied; specifically, that U0
j (ξ) =

[
U0

j (ξ)
]
exact

.

The norm (4.15) can be written in this case as

Lp =


 1

Ncell

Ncell∑
j=1

∫ 1
2

− 1
2

|un
j (ξ) − Un

j (ξ)|p dξ




1/p

,

where Ncell is the number of mesh cells. Substituting (4.21) and (4.24) into the above expression gives

Lp =

∥∥∥∥∥gn
exacte

iθξ −
k+1∑
�=1

gn
� e� B(ξ)

∥∥∥∥∥
p
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where

‖f(ξ)‖p ≡
[∫ 1

2

− 1
2

|f(ξ)|p dξ

]1/p

.

A straightforward bound on Lp is

Lp ≤ (Lp)
init + (Lp)

evol + (Lp)
spur

, (4.26a)

where

(Lp)
init =

∥∥eiθξ − e1 B(ξ)
∥∥

p
, (4.26b)

(Lp)
evol = |gn

exact − gn
1 |
∥∥e1 B(ξ)

∥∥
p
, (4.26c)

(Lp)
spur =

k+1∑
�=2

|g�|n
∥∥e� B(ξ)

∥∥
p
. (4.26d)

The (Lp)
init-norm represents the error in projecting the initial condition onto the accurate mode. This is

a one-time contribution to the overall error. The (Lp)
evol-norm represents the error in the evolution of the

accurate mode. For small |gexact − g1|,

(Lp)
evol ≤ n |gexact − g1|

∥∥e1 B(ξ)
∥∥

p
+ O

(
n2 |gexact − g1|2

)
. (4.27)

The (Lp)
spur-norm represents the contribution of the spurious modes. Since DG(k) is stable, |g�| ≤ 1, and

therefore a loose bound on (Lp)
spur that will prove useful is

(Lp)
spur ≤

k+1∑
�=2

∥∥e� B(ξ)
∥∥

p
≡ (Lp)

spur
max . (4.28)
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Another norm we will study is the error in the cell averages, defined by

L̄p(v) =


 1

Ncell

Ncell∑
j=1

|v̄j,exact − v̄j |p



1/p

, (4.29)

where v̄j denotes the cell-average. A property of the Legendre basis used in (4.17) is that the coefficient c̄n
j,1

is the cell average in the j’th cell. Consequently, for the Fourier analysis the cell-average norm reduces to

L̄p =

∣∣∣∣∣gn
exacteexact,1 −

k+1∑
�=1

gn
� e�,1

∣∣∣∣∣ . (4.30)

This expression can be bounded in a similar manner as the Lp-norm;

L̄p ≤ (
L̄p

)init +
(
L̄p

)evol +
(
L̄p

)spur
, (4.31a)

where

(
L̄p

)init = |eexact,1 − e1,1| , (4.31b)

(
L̄p

)evol = |gn
exact − gn

1 | |e1,1| , (4.31c)

(
L̄p

)spur =
k+1∑
�=2

|g�|n |e�,1| . (4.31d)

Analogous to the bounds (4.27) and (4.28),

(
L̄p

)evol ≤ n |gexact − g1| |e1,1| + O
(
n2 |gexact − g1|2

)
, (4.32)

(
L̄p

)spur ≤
k+1∑
�=2

|e�,1| ≡
(
L̄p

)spur

max
. (4.33)
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Further analysis requires expressions for g� and e�. For DG(1), the numerical solution can be written as

Un
j (ξ) = Ūn

j + S̄n
j ξ,

so that in relation to eq. (4.19),

c̄n
j =


Ū

S̄




n

j

, B(ξ) =


1

ξ


 .

The variable Ūn
j is the cell-average, while S̄n

j /h can be thought of as a slope; in fact, through eq. (4.18) it

can be shown that

S̄0
j /h = ∂xu0(xj) + O(h2). (4.34)

The update matrix for DG(1) on the Riemann Mesh is

GR =


 1 − ν + νT−1 − 1

2ν(1 − ν)(1 − T−1)

6ν(1 − ν)(1 − T−1) (1 − ν)(1 − 2ν − 2ν2) − ν(3 − 6ν + 2ν2)T−1


 ,

(4.35)

where Tmuj ≡ uj+m. Note that GR
1,1 is the first-order upwind scheme. A Fourier analysis for the matrix

(4.35) is given by Van Leer, who referred to this method as Scheme III [40]. Here we will give the analysis

for DG(1) on the Staggered Mesh, which has an update matrix given by

GS = G 1
2 SG 1

2 S , (4.36a)
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where

G 1
2 S =




1
2 (1 + ν) 1

8 (1 − ν2)

− 3
2 (1 − ν2) − 1

4 (1 + ν)(1 − 4ν + ν2)


T− 1

2

+




1
2 (1 − ν) −1

8 (1 − ν2)

3
2 (1 − ν2) − 1

4 (1 − ν)(1 + 4ν + ν2)


T

1
2 . (4.36b)

In this case, G 1
2 S
1,1 is the Lax-Friedrichs scheme.

For a matrix in the form of (4.35) or (4.36), the analysis reduces to setting Tm = emθ and analyzing the

eigenstructure. The eigenvalues of (4.36) are, for small θ,

g1 = 1 − iνθ − 1
2
(νθ)2 +

1
6
i(νθ)3 +

1
576

(
25ν4 + 2ν2 − 3

)
θ4 + O(θ5),

g2 =
1
4
(
1 − 3ν2

)2
+

1
4
i
(
3 − ν2

) (
1 − 3ν2

)
νθ + O(θ2).

Comparing g1 with gexact gives

gexact − g1 =
1

576
(1 − ν2)(3 + ν2)θ4 + O(θ5).

Assuming that nθ = O(1), we obtain from (4.27) and (4.32) that

(Lp)
evol = O(θ3),

(
L̄p

)evol = O(θ3). (4.37)

That is, the accurate mode is propagated with third-order accuracy, which is a property that is shared by

DG(1) on the Riemann Mesh (Scheme III of [40]). The evolution of the 2-mode is inconsistent with (4.16);

the 2-mode is a spurious mode. However, with the condition |ν| < 1, the 2-mode is damped faster than the

accurate mode. Values for the damping will be given in §4.2.1.
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The eigenvectors corresponding to g1 and g2 can be written as

e1 =


 1 − 1

24θ2 + 1
72 iθ3

iθ + 1
6νθ2 − 1

72 i
(
3 + 2ν2

)
θ3


+ O(θ4), (4.38)

e2 =


 − 1

72 iθ3

− 1
6νθ2 + 1

180 i
(
3 + 5ν2

)
θ3


+ O(θ4). (4.39)

An evaluation of (4.22) results in

eexact =
2
θ


 sin

(
θ
2

)
6i
θ

[
2 sin

(
θ
2

)− θ cos
(

θ
2

)]

 ,

=


 1 − 1

24θ2

iθ − 1
40 iθ3


+ O(θ4).

Substituting the eigenvector expansions into (4.26b) and (4.28) gives that

(Lp)
init = O(θ2), (Lp)

spur
max = O(θ2),

while from (4.31b) and (4.33),

(
L̄p

)init = O(θ3),
(
L̄p

)spur

max
= O(θ3).

Combined with the result (4.37), DG(1) is second-order accurate with respect to the Lp-norm, but third-order

accurate with respect to the L̄p-norm. However, in numerical experiments we sometimes realize third-order

accuracy in Lp, which indicates that in these cases the (Lp)
evol-norm is the dominating component. A

discussion of this phenomenon will be given in §4.2.1.
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Note that one interpretation of e1,2 is that the accurate mode considers the ‘slope’ to be

S1

h
= ∂xu − 1

6
νh∂xxu + O(h2). (4.40)

That is, once the 2-mode is fully damped, the solution has a slope that is only first-order accurate. One

difficulty with interpreting S/h as a slope is when developing an accuracy-preserving limiter. Comparing

S/h to O(h2)-slopes (formed by differencing {Ūj}) will, by (4.40), result in S/h appearing as an outlier.

The same trends observed in this section for the Staggered Mesh are also true for the Riemann Mesh,

with changes only to the error coefficients.

For k = 2 and k = 3, the Fourier analysis has been computed numerically [25]. We observe the following

convergence rates:

(Lp)
evol = O(θ2k+1),

(
L̄p

)evol = O(θ2k+1), (4.41a)

(Lp)
spur
max = O(θk+1),

(
L̄p

)spur

max
= O(θk+2). (4.41b)

In addition, for the (L2)
init and

(
L̄p

)init-norms, we computed the same convergence rate as their respective

(·)spur
max-norm. The reason is that for the cell-average norm, using (4.25),

(
L̄p

)init =

∣∣∣∣∣
k+1∑
�=2

e�,1

∣∣∣∣∣ ≤ (
L̄p

)spur

max
.

Similarly,

(Lp)
init =

∥∥∥∥∥eiθξ − eexactB(ξ) +
k+1∑
�=2

e� B(ξ)

∥∥∥∥∥
p

≤ ∥∥eiθξ − eexactB(ξ)
∥∥

p
+ (Lp)

spur
max .
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For any reasonable basis B(ξ) that uses order-k polynomials,

∥∥eiθξ − eexactB(ξ)
∥∥

p
= O(θk+1);

that is, the same convergence rate observed for the (Lp)
spur
max-norm.

From the eqs. (4.41), it is apparent that the convergence is dictated by the (·)spur
max-norm. Therefore,

Lp = O(θk+1), (4.42a)

L̄p = O(θk+2), k ≥ 1. (4.42b)

Note that DG(0), although not discussed here, converges as L̄p = O(θ), since in this case the convergence is

determined by the (L̄p)evol-norm.

4.2.1. Conditions for Superconvergence. Using the analysis of the previous section, in this section

an argument is given as to why superconvergence can occur. The argument will be made for the Lp-norm

with the understanding that the same argument can be made for the L̄p-norm.

In cases where O(h2k+1) convergence is observed, it is apparent that the (·)evol-norm dictates the con-

vergence. For long-time calculations, there are two main reasons the error is dictated by the (Lp)evol-norm:

1. The spurious modes damp out, so that the contribution of the (Lp)
spur-norm vanishes.

2. The (Lp)
init-norm represents a one-time contribution to the overall error. Given enough time, the

(Lp)
evol-norm will overwhelm this contribution, even though the (Lp)

evol-norm converges at a faster

rate than the (Lp)
init-norm.

Consider the first item above. As an example of the dependence of the damping on the mesh size,

Figure 4.1 shows the damping rates calculated for ν = 0.75. Now, directly comparing |g�| at different

Courant numbers can be misleading, particularly for small Courant numbers. For a computation to some
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Fig. 4.1. Damping Rates, ν = 0.75. For DG(2) and DG(3), on the axis scale above, the accurate mode (1-mode) is
indistinguishable from |g| = 1.

time tfinal > 0, the number of time-steps required is given by

n =
tfinal

∆t
=

atfinal

νh
. (4.43)

Since the total damping of the �’th mode is proportional to |g�|n, then for a given h and tfinal, a useful
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Fig. 4.2. Damping Measure of 2-mode Relative to Accurate Mode for a Fixed Computation Time, Staggered and Riemann
Meshes, θ = π/4.

measure of the damping is the quantity

|g�|
1
ν . (4.44)

The above quantity allows for a meaningful comparison of the damping for different Courant numbers. Figure

4.2 shows the damping measure (4.44) for the 2-mode relative to the accurate mode as a function of ν. Note

that by definition the 2-mode is the least-damped spurious mode.

A negative conclusion of Figures 4.1 and 4.2 is that as k increases, the damping of the spurious modes

decreases. However, the initial magnitudes of the spurious modes also decrease with increasing k. After all,

(Lp)
spur
max = O(θk+1). Another concern is when the 2-mode is damped at the same rate as the accurate mode,

which occurs in the following instances:

1. θ = ±π, for all ν. This condition corresponds to two cells per wavelength, the highest frequency

resolved by the Fourier analysis. In this case g2 is the complex conjugate of g1, so that the 2-mode
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moves in the opposite direction of the accurate mode. This property is undesirable. However, for

0 < |ν| < 1,

|g1|θ=±π < |g1||θ|<π.

In other words, the highest-frequency accurate mode is the most heavily damped. Note also that

for large k, it is feasible that DG(k) could adequately resolve the θ = ±π modes, but would require

k > 3, which is beyond the scope of this study.

2. |ν| = 1, for all θ. In this case, all of the g� are equal with |g�| = 1, and DG(k) shifts the tn-solution

exactly by a single-mesh cell. This is a desirable property.

Therefore, the only problematic case is when θ = ±π. The hope is that for a general solution made up of

all Fourier modes, the contribution of the θ = ±π modes are small; that is, that the solution is at least

moderately resolved.

As an aside, for the Riemann Mesh at ν = 0, all of the g� are equal with |g�| = 1. This property is similar

to Item 2 above, but in this case the DG(k) solution is stationary. However, on the Staggered Mesh, DG(k)

at ν = 0 damps all of the modes [25], which is a property of any time-staggered (Lax-Friedrichs based)

method. At low Courant numbers, the damping results in diffusion, with consequences that are unavoidable

for 2-D problems. See the results of §5.3 for further discussion.

Assuming that 0 < |ν| < 1, the condition (4.23) for the spurious modes becomes

1 > |g2| > |g3| . . . > |gk+1|.

Consequently, from the definition (4.26d),

lim
n→∞ (Lp)

spur = 0. (4.45)
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Note that for a given computation time, by (4.43), n → ∞ as h → 0. In terms of the time required to damp

the spurious modes, let the time tdamp be defined such that (L2)
spur

< ε if t > tdamp. Then

tdamp(ε) =
νh

a

log
(
ε
∥∥e2 B(ξ)

∥∥−1

2

)
log |g2| . (4.46)

Note that tdamp(ε) → 0 as h → 0.

For superconvergence to occur requires that, roughly speaking,

(Lp)
evol

> (Lp)
init + (Lp)

spur
. (4.47)

Because of (4.45), the right-hand side of the above relation decreases with n, whereas (Lp)
evol grows with n.

Also, if |θ| > 0 then |g1| < 1, so that by (4.26c)

lim
n→∞ (Lp)

evol =
∥∥e1 B(ξ)

∥∥
p

> (Lp)
init

.

Therefore, coupled with the result (4.45), there exists some n such that (4.47) is satisfied. In fact, using

(4.27) and (4.41a), an estimate for when (4.47) is satisfied is

n > O(hk+1−(2k+2)) = O(h−(k+1)).

In terms of the time required, this estimate translates to

t > tsuper ≡ O(h−k).

We stress that, strictly speaking, for Fourier data DG(k) converges as O(hk+1) in Lp. After all, tsuper → ∞

as h → 0. Our only claim is that under certain instances, O(h2k+1) convergence may be realized in the

course of finite-mesh refinement.
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The arguments above also apply to the L̄p-norm, except that tsuper = O(h−k+1). Therefore, supercon-

vergence occurs sooner in L̄p than Lp.

We conjecture that if the semi-discrete version of DG is used with a O(∆t2k+1) accurate time integrator,

then superconvergence may be obtained. For example, Atkins and Shu [2] have observed O(h3) convergence

in the cell-averages for k = 1, using third-order time integration.

5. Results. In this section, preliminary results are presented for several model problems. The focus

will be on confirming the accuracy claims of §4.2. More extensive results will be shown in the companion

paper [26] and can also be found in [25, 27].

All of the results presented in this study were computed such that the maximum residual in each element

is converged to a tolerance of 10−12. For details on the iteration method, see [25]. We should note that

there are several other iteration methods covered in [25]. Some of these methods reduce the cost by not fully

converging the residual, yet for many problems these methods have sufficient accuracy. However, for strongly

non-linear problems, in order to obtain the superconvergence property, in our experience the residual must

be sufficiently converged.

5.1. Scalar Advection. Numerical solutions are presented in this section for eq. (4.16) with periodic

boundary conditions, a = 1, 0 ≤ x ≤ 1, and the initial condition u0(x) = sin(2πx). Figure 5.1 shows the

order-of-accuracy history for the Staggered Mesh, ν = 0.8, using the L1 and L̄1-norms. Similar results are

obtained for the Riemann Mesh. Indicated on each plot is time tdamp evaluated at ε = 10−16.

At least for early times, DG(k) follows the Fourier analysis’ prediction of O(hk+1) in Lp. An interesting

phenomenon can occur, however, as shown by the results for DG(1). Given enough time, the spurious modes

damp out, while the evolution error accumulates and overcomes the initial-projection error. Past this time,

for a given stage in mesh refinement, the accuracy convergence is dictated by the evolution error, (L1)
evol,

which converges as O(h2k+1).

Superconvergence is also evident in the L̄1-norm for k = 2, 3. This is because the initial error satisfies

(
L̄1

)init � (L1)
init, as discussed in §4.2. Therefore, the order asymptotes to apparent O(h2k+1)-accuracy
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Fig. 5.1. Order-of-Accuracy History, Sine Wave, Staggered Mesh, ν = 0.8, using L1 and L̄1-norms. The two mesh sizes
used for the order calculation are indicated. The vertical lines indicate the values of tdamp(10−16) for the two meshes, where
tdamp is greatest on the coarser mesh.

Case log10(L1) log10(L̄1)
DG(1), Mesh 80, t = 50 -3.560815 -3.560852
DG(2), Mesh 80, t = 100 -6.084043 -7.511184
DG(3), Mesh 20, t = 200 -6.082852 -7.513638

Table 5.1
Errors for DG(k) at final time, corresponding to Figure 5.1.
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much more quickly in L̄1 than L1. Note that the time at which the evolution error overcomes the initial-

projection error, tsuper, increases with mesh size, and therefore strictly speaking the convergence in L̄1 is

O(hk+2). However, the finest mesh used in each case here gives results that are extremely well-resolved,

as shown in Table 5.1. For many practical problems where long-time integration is required, there is the

possibility of realizing O(h2k+1)-accuracy, particularly in L̄p.

Referring to Figure 5.1c, our conjecture is that the oscillations at early time are caused by the spurious

modes.

5.2. Simple Wave Solutions. In this section, solutions to the 1-D Euler equations are presented.

The numerical results given in this section will show how nonlinear effects change the error estimates stated

in §4.2. The error estimates were derived assuming that spurious modes are only created during the initial

projection, and that the accurate and spurious modes do not interact. For nonlinear problems, this is not

the case, as spurious modes are excited at each time-step.

Consider the solution domain 0 ≤ x ≤ 1, with periodic boundary conditions, and the initial condition

u0(x)
a∞

= M∞ +
cos(2πx)

(γ + 1)πtshock
, (5.1a)

a0(x)
a∞

= 1 +
γ − 1

2

(
u0(x)
a∞

− M∞

)
, (5.1b)

where u is the velocity, a the soundspeed, γ the ratio of specific heats, M the Mach number, and tshock is

the time at which a shock forms. The ‘∞’-conditions correspond to the mean flow state. The initial pressure

and density are computed from isentropic conditions:

p0(x)
p∞

=
(

ρ0(x)
ρ∞

)γ

=
(

a0(x)
a∞

) 2γ
γ−1

, (5.1c)

where p is the pressure and ρ the density. For t < tshock, the resulting flow is a simple-wave region with an

analytic solution.
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Fig. 5.2. Exact Solution for Simple-Wave Problem, M∞ = 1, tshock = 10, γ = 1.4. Note that each wave has traveled
t-periods.

An exact solution is shown in Figure 5.2. Solutions for DG(k), k = 1, 2, 3, were generated using the

Staggered Mesh and the order-of-accuracy history is shown in Fig. 5.3. The order is computed using both

the density L̄1 and L1-norms. In L̄1, the results roughly follow a O(h2k+1) convergence rate for early times,

but then loose this property as the wave steepens. Only O(hk+1) convergence is realized in L1(ρ). For this

problem, apparently the wave steepens before the superconvergence criterion (4.47) can be satisfied in the

L1(ρ)-norm.

Note that for this problem, the Riemann Mesh gives nearly identical results as the Staggered Mesh [25].

At this point, it is still not clear that superconvergence is lost solely because of wave steepening, or if

there is also a contribution from the accumulation of error. Moreover, all problems thus far used periodic

boundary conditions. To help resolve this issue, consider the initial condition

u0(x)
a∞

= M∞ +
0.04 tanh

(
10(x − 1

2 )
)

γ + 1
,
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Fig. 5.3. Order-of-Accuracy History, Simple-Wave Expansion, Staggered Mesh, ν = 0.9, using L1 and L̄1-norms. Mesh
sizes 40 and 80 were used for the order calculation.

with the remaining conditions computed the same as (5.1). A standard characteristic boundary condition

is used at each endpoint; see [25] for the details. With M∞ = −1, the resultant expansion wave remains

centered in the domain. Figure 5.4 shows the initial condition and results at t = 10 for DG(3) on the

Staggered Mesh, using 25 cells.

The order-of-accuracy history is plotted in Figure 5.5. For this problem, apparently the evolution error

dominates and superconvergence is obtained for all k, even in L1. Again, we stress that the asymptotic
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Fig. 5.4. DG(3) Solution for Simple-Wave Expansion, Staggered Mesh, 25 cells, ν = 0.9, γ = 1.4, t = 0, 10. The DG(3)
and exact solutions are coincident on this scale.

convergence of DG(k) in L1 is at best O(hk+1). Nevertheless, h is small enough here that the problem is

well resolved, as shown in Table 5.2 where the final errors on the finest mesh are given.

Case log10((L1(ρ)) log10(L̄1(ρ))
DG(1), Mesh 200 -5.311639 -5.311261
DG(2), Mesh 100 -7.360227 -7.325360
DG(3), Mesh 50 -8.065886 -7.951923

Table 5.2
Errors for DG(k) at t = 10, corresponding to Figure 5.5.

The results of this section show that given a long enough integration time, the benefits of superconver-

gence can be realized for nonlinear problems. It is encouraging that nonlinear effects by themselves do not

destroy superconvergence. Once a wave profile steepens beyond what can be smoothly represented on the

mesh, the superconvergence breaks down, but this is to be expected.
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Fig. 5.5. Order-of-Accuracy History, Simple-Wave Expansion, Staggered Mesh, ν = 0.9, using L1 and L̄1-norms. The
two mesh sizes used for the order calculation are indicated.
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5.3. 2-D Scalar Advection. Consider the linear advection equation,

∂tu + cos(α)∂xu + sin(α)∂yu = 0. (5.2)

The solution domain is 0 ≤ x, y ≤ 1, with periodic boundary conditions, and an initial condition

u(x, 0) = sin(2πx) sin(2πy).

In §3.1.2 the claim was made that the accuracy of DG(k) is fairly independent of how the advection direction,

α, is oriented on the mesh. The numerical results of this section will discuss in what sense this α-independence

is true.

Results here are compared with the Hancock finite-volume method [39]. Hancock is a fully-discrete

method that is second-order accurate in both space and time. In 1-D, the method reduces to Fromm’s

scheme, which is designed to have low phase error [17]. Note that for eq. (5.2) solved on the Staggered

Mesh, the Courant condition (2.8) requires that

∆tDG ≤ h

max(| sin(α)|, | cos(α)|) ,

while for the Hancock method

∆tHancock ≤ h

| sin(α)| + | cos(α)| .

Figure 5.6 shows the accuracy of DG(1) and Hancock as a function of α, on a 10×10-cell mesh, computed

to a time t = 10. The advection direction is aligned with the mesh at α = 0. Since the stability constraint of

each method is a function of α, as α is varied, either the Courant number or the time-step may be fixed. For
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Fig. 5.6. Accuracy of DG(1) and Hancock as a Function of Advection Direction, α. The ∆t = const. curves denote a
time-step corresponding to maxα(ν) = 0.9. The 1-D Error Level indicates the error for the equivalent 1-D problem.

more complicated conservation laws, a fixed time-step could correspond to problems where the maximum

wavespeed is associated with some other wave family, or omni-directional waves. Fixing the Courant number

is relevant to advection-dominated problems. Figure 5.6 shows the error levels for a fixed ν = 0.9, and for a

fixed time-step.

For a fixed time-step, DG(1) is fairly insensitive to α. Note that in this case, DG’s time-step is restricted

by its α = 0 value, while Hancock is restricted by its α = 45◦ value. For a fixed Courant number, DG can

take its largest time-step at α = 45◦, and therefore requires fewer time-steps to reach the final time level.

Consequently, the error is lowest at α = 45◦.

For both cases, Hancock has lowest error in the mesh-aligned case. It may then be tempting to conclude

that this shows that DG(1) is superior, since it shows little preference for the mesh-aligned case. However,

a more pessimistic conclusion can be also be drawn. As mentioned in §4.2.1, the DG(k) method on the

1-D Staggered Mesh is diffusive at a Courant number of zero. In 2-D, this symptom also means that in the
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mesh-aligned case (α = 0◦, 90◦), for any Courant number, DG(k) will have significant “cross-diffusion” in

the advection-normal direction (α ± 90◦). Hancock has no cross-diffusion in the mesh-aligned case. This is

clearly shown in Figure 5.6 where the error levels for the equivalent 1-D problem at ν = 0.9 are indicated;

DG’s 1-D error level is over an order-of-magnitude lower than its 2-D mesh-aligned result. The conclusion

here is that even for simple problems, the drawbacks of mesh staggering are unavoidable in 2-D; the Courant

number can not be increased to eliminate the problem, unlike in the 1-D case. Cross-diffusion is inevitable

for any time-staggered method.

On the positive side for DG(k), the benefits of zero cross-diffusion are quickly lost by Hancock as the

advection direction becomes misaligned with the mesh. For many practical problems, DG’s cross diffusion

should be tolerable. If not, one possible remedy is to use a Riemann Mesh in 2-D; or, at least use the

Riemann Mesh in critical areas, such as for mesh-aligned shear flows. The present study implements this

approach in a limited manner by requiring Riemann Faces at all mesh boundaries.

For this problem we also observe O(h2k+1) convergence for DG(k), k = 1, 2, 3 [25]. As a consequence,

for mesh sizes larger than 25×25 and a fixed Courant number, DG(1) has a lower error level than Hancock

for all α.

Sample numerical results for this problem are given in Figure 5.7. For α = 0, the two methods give

similar results, except that DG(1) has more damping. On the other hand, for α = arctan(3/4), the Hancock

results are very distorted. A Fourier analysis helps explain this distortion [25].

6. Summary. A time-accurate method has been developed that is based on the Discontinuous Galerkin

method. Results were shown to verify that O(h2k+1)-convergence occurs for certain long-time calculations.

A Fourier analysis was given that argues why this superconvergence occurs. The analysis showed that the

evolution error can dominate the error-convergence rate in the course of finite-mesh refinement, and that

this error component converges as O(h2k+1). A more rigorous analysis is needed to determine the precise

conditions for superconvergence to be realized. For any order-of-accuracy and a convex flux, we proved in the

scalar case that the method is L2-stable for Courant numbers less than 1 and satisfies an entropy condition.
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Fig. 5.7. Comparison of 2-D Scalar Advection Results, DG(1) and Hancock. 10×10 mesh, ν = 0.9, t = 10. The contours
are of the method’s polynomial representation within each cell, which for Hancock is its reconstruction.

A comparison of DG(k) with the Runge-Kutta version (DGRK) shows three advantages. The first

advantage is that the Courant restriction for DGRK(k) is inversely proportional to k (at least for small

k), whereas the space-time version is stable for Courant numbers less than 1. Secondly, DG(k) has a

superconvergence property, although there is some evidence that DGRK(k) with a O(∆t2k+1) time integrator

may give the same benefit. Thirdly, the space-time version gives a straightforward recipe to obtain a high

order-of-accuracy in both space and time. Where the multi-stage version clearly shows an advantage is in its
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simplicity, which we would certainly concede that unless time accuracy is critical, outweighs the advantages

of the present space-time version.

The use of the Staggered Mesh allowed for the elimination of the Riemann problem. An analogous

idea has been studied by many others [1, 28, 36]. The disadvantage of any staggered mesh approach is the

presence of diffusion at low Courant numbers. Although seemingly innocuous in 1-D problems, in 2-D the

diffusion effects are unavoidable, resulting in ‘cross-diffusion’ even when the mesh lines are aligned with the

characteristics.

In the companion paper [26], we show more results for the 1-D Euler equations, including those with

a limiter we have developed. 2-D Euler results will also be shown. Additional results can also be found in

[25, 27].
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